
Security PS

Combating Common Web App
Authentication Threats

Bruce K. Marshall, CISSP, NSA-IAM
Senior Security Consultant
bmarshall@securityps.com

Copyright © 2005 Security PS 2

Key Topics

Key Presentation Topics
• Understanding Web App Authentication

• Managing User Authentication

• Securing Session Authentication

Copyright © 2005 Security PS 3

Web App Authentication

Web App Authentication Challenges
• Authentication takes place with every

browser-server interaction
• HTTP natively transmits data unencrypted
• Developers often fail to understand their

responsibility for good authentication design
• Attackers are getting better at defeating web

app authentication systems

Copyright © 2005 Security PS 4

Authentication System Model

AuthenticatorAuthenticator

InputInput

TransportTransport

VerificationVerification

Copyright © 2005 Security PS 5

Protecting Web Content

Protecting Web Content
• Segment protected content

from unprotected

• Authenticate users prior to
granting content access

• Map only appropriate
user permissions or roles
to content

• Don’t rely on obscurity!

Copyright © 2005 Security PS 6

Types of Web Authentication

Type of Web Authentication
• HTTP integrated

Basic

Digest

NTLM / Kerberos

• Form-based
POST delivered parameters

Copyright © 2005 Security PS 7

Protecting Data with SSL

Protecting Data with SSL
• Allows Web server to prove identity w/

certificate from trusted Certificate Authority
• Initiates encrypted communications between

browser and Web server
• Supports multiple encryption algorithms for

weak to stronger protection
• May be needed during entire Web session,

and not just during authentication

Copyright © 2005 Security PS 8

User Authentication

User Authentication
• Normally relies on username

and password
• Consider using a unique,

but not meaningless,
username standard

Not Social Security numbers
Not overly simple/predictable
numbers or names
Be wary of email addresses

Copyright © 2005 Security PS 9

Enforcing Good Passwords

Enforcing Good Passwords
• Don’t leave it all up to the user’s discretion
• Enforce basic requirements

Length
Character Composition
Name and word rejection
Maximum lifetime

• Start with a good and unique default
Require change upon first login

Copyright © 2005 Security PS 10

Error Messages

Authentication Error
Messages
• Prevent disclosure of

username match in login
failure messages

“User account not found” or
“Password incorrect”
“Error retrieving/updating
the SecurityUserEntity” or
“User ID or password entered
is not valid”

Copyright © 2005 Security PS 11

Auditing Authentication Failures

Auditing Authentication Failures

• Log all successful and
failed logins

• Alert staff when failed
logins hit threshold

• Consider IP block or
account lockout

• Notify user of last
successful login and
unsuccessful attempts

Copyright © 2005 Security PS 12

Forgotten Passwords

Forgotten Passwords
• Human-centered systems for dealing with

forgotten passwords are more costly
• Automated systems pose security challenges

View password hint
Provide answer to secondary secret
Provide answers to pre-selected questions
Email existing/new password to user

• Consider forcing logoff after password
change

Copyright © 2005 Security PS 13

Password Storage

Password Storage
• Password database should be well protected
• Obfuscate stored passwords using a one-way

cryptographic hash function
• Seed hash function for greater security

Copyright © 2005 Security PS 14

Alternative Authenticators

Alternative Authenticators
• Make sure that alternative means of

authenticating are appropriately secure
Order numbers
Phone numbers

• Consider stronger authentication factors
Hardware tokens
Software tokens
Client-side certificates
Biometrics

Copyright © 2005 Security PS 15

Session IDs

Session IDs
• Identify the user to the Web application with

a temporary ID
• Usually stored and transmitted as a “cookie”
• Can be stored in the URL
• Assigned either after or

prior to user authentication
• As valuable as a password

Copyright © 2005 Security PS 16

Cookie Assignment & Use

GET http://www.shopapp.com/ HTTP/1.1

Host: www.shopapp.com

GET http:// www.shopapp.com/home.asp HTTP/1.1
Host: www.shopapp.com
Cookie: FPB=dc1hj7k1g11f288p

HTTP/1.1 200 OK
Date: Wed, 03 Aug 2005 19:55:04 GMT
Set-Cookie: FPB=dc1hj7k1g11f288p;

expires=Thu, 01-Jun-2006
19:00:00 GMT; path=/;
domain=www.shopapp.com

Connection: close

Copyright © 2005 Security PS 17

Strong Session IDs

Critical Factors for Strong Sessions
• Privacy

Must be difficult to captureMust be difficult to capture

• Predictability
Must be difficult to predictMust be difficult to predict

• Key Space
Must be difficult to brute forceMust be difficult to brute force

• Time Window
Must be valid for limited time onlyMust be valid for limited time only

Copyright © 2005 Security PS 18

Session IDs - Privacy

Requirement 1: Privacy
Lack of SID Privacy Leads to Session Theft:

1. Obtain a valid session ID from another
user’s session

2. Substitute session ID and assume victim’s

Session ID Privacy Tips:
• Use SSL
• Use cookie flags (e.g. secure, path,

non-persistent)
• Pass ID securely (e.g. Not in URL)

Copyright © 2005 Security PS 19

Session IDs - Predictability

Requirement 2: Very Low Predictability
Predicting A Session ID:

• Gather a number of cookies
• Find pattern; predict existing or future IDs
• Use predictions to steal user sessions
sessionID=49PAKD43301356F
sessionID=49PAKD43301357F
sessionID=49PAKD43301358F
sessionID=49PAKD43301359F
sessionID=49PAKD43301360F
sessionID=49PAKD43301361F

Example: Single
increment pattern.
Simple to predict.

Copyright © 2005 Security PS 20

Session IDs – Key Space

Requirement 3: Large Key Space
Brute Forcing a Session ID:

• Gather a number of cookies
• Find any pattern to reduce “key space”
• Use a script to generate and test cookies

Example: ID with constant,
pattern, and randomized
values. Brute force-able.

sessionID=49AKD494958F
sessionID=49AKD483492F
sessionID=49AKD459304F
sessionID=50AKD431333F
sessionID=50AKD412983F
sessionID=50AKD463340F

Copyright © 2005 Security PS 21

Session IDs – Time Window

Requirement 4: Limited Time Window
• Limiting the time for an attacker to brute force,

predict, or steal a session
• Must balance timeframe with annoyance to user
• Associate a server-side timestamp with

each session ID
• Refresh timestamp each time a request

associated with the session is received
• Give users a logoff button that expires session ID

Copyright © 2005 Security PS 22

Hidden Parameter Manipulation

Hidden Parameter Manipulation
Allow an app to access data hidden from user
<form action=<form action=““/comment.asp/comment.asp”” method=method=““POSTPOST””>>

Comment: <input name=Comment: <input name=““commentcomment”” size=20>size=20>
<input type=<input type=““submitsubmit””>>
<input type=<input type=““hiddenhidden”” name=name=““useriduserid””

value=value=““bmarshallbmarshall””>>
</form></form>

Comment: I like this site Submit

• comment=I like this site
• userid=bmarshall

User Sees:

App Sees:

Copyright © 2005 Security PS 23

Hidden Parameter Manipulation

Parameter Injection
Expected application behavior is changed by
inserting parameters into a request

Common examples:
• admin=1
• Mode=debug
• discount_code=102

Copyright © 2005 Security PS 24

Cross-Site Scripting

Cross-Site Scripting (XSS)
• Your application may be tricked into serving

up an attacker’s HTML or scripts to users
• Commonly used to steal the user’s session ID
• May be used to steal username & password

credentials from a form

Copyright © 2005 Security PS 25

Step 1: User submits input

Step 2: Application processes input, stores values:
Name = Kris Drent
Email = kdrent@securityps.com

Steps 3-4: Application retrieves values from database and
places them on HTML page:

<td>
Kris Drent

</td>
<td>
kdrent@securityps.com

<td>

Normal Application Operation:

Cross-Site Scripting

Copyright © 2005 Security PS 26

Phase 1: User submits name with unexpected HTML tags:

Phase 2: Application processes input, stores values:
name= Steve Rodgers<script>alert(“Gotcha…”)</script>
email= srodgers@securityps.com

Phase 3-4: Application retrieves values from database and
places them on HTML page:

<td>
Steve Rodgers<script> alert(“Gotcha…”) </script>

</td>
<td>
srodgers@securityps.com

<td>

Steve Rodgers<script>alert(“Gotcha…”)</script>

Cross-Site Scripting

Exploited Operation:

Copyright © 2005 Security PS 27

XSS Solutions

Cross-Site Scripting Solutions
• Perform data validation

Inspect all input for expected characters
and formatting
Prepare all output for proper encoding
Build this into global app data validation
library for regular reuse

Copyright © 2005 Security PS 28

Phishing

Phishing
• Act of tricking users into sending their

login credentials or other info to attacker
• Must focus on user to hinder

Educate about communication policies
Stick with communication policies
Authenticate the organization to the user

• Make phishing easy to report

Copyright © 2005 Security PS 29

Summary

Summary & Call to Action
• Take initiative to implement strong user

authentication now
• Investigate how web apps handle session ID

generation and management
• Validate input to prevent XSS and SQL

injection
• Visit www.passwordresearch.com

Copyright © 2005 Security PS 30

Questions?

